Dendritic spine remodeling after spinal cord injury alters neuronal signal processing.
نویسندگان
چکیده
Central sensitization, a prolonged hyperexcitability of dorsal horn nociceptive neurons, is a major contributor to abnormal pain processing after spinal cord injury (SCI). Dendritic spines are micron-sized dendrite protrusions that can regulate the efficacy of synaptic transmission. Here we used a computational approach to study whether changes in dendritic spine shape, density, and distribution can individually, or in combination, adversely modify the input-output function of a postsynaptic neuron to create a hyperexcitable neuronal state. The results demonstrate that a conversion from thin-shaped to more mature, mushroom-shaped spine structures results in enhanced synaptic transmission and fidelity, improved frequency-following ability, and reduced inhibitory gating effectiveness. Increasing the density and redistributing spines toward the soma results in a greater probability of action potential activation. Our results demonstrate that changes in dendritic spine morphology, documented in previous studies on spinal cord injury, contribute to the generation of pain following SCI.
منابع مشابه
Neuropathic pain memory is maintained by Rac1-regulated dendritic spine remodeling after spinal cord injury.
Localized increases in synaptic strength constitute a synaptic basis for learning and memory in the CNS and may also contribute to the maintenance of neuropathic pain after spinal cord injury (SCI) through the de novo formation or elaboration of postsynaptic dendritic structures. To determine whether SCI-induced dendritic spine remodeling contributes to neuronal hyperexcitability and neuropathi...
متن کاملDendritic spine dysgenesis in superficial dorsal horn sensory neurons after spinal cord injury
Neuropathic pain is a major complication of spinal cord injury, and despite aggressive efforts, this type of pain is refractory to available clinical treatment. Our previous work has demonstrated a structure-function link between dendritic spine dysgenesis on nociceptive sensory neurons in the intermediate zone, laminae IV/V, and chronic pain in central nervous system and peripheral nervous sys...
متن کاملDendritic spine dysgenesis contributes to hyperreflexia after spinal cord injury.
Hyperreflexia and spasticity are chronic complications in spinal cord injury (SCI), with limited options for safe and effective treatment. A central mechanism in spasticity is hyperexcitability of the spinal stretch reflex, which presents symptomatically as a velocity-dependent increase in tonic stretch reflexes and exaggerated tendon jerks. In this study we tested the hypothesis that dendritic...
متن کاملCo-Ultramicronized Palmitoylethanolamide/Luteolin Promotes Neuronal Regeneration after Spinal Cord Injury
Spinal cord injury (SCI) stimulates activation of astrocytes and infiltration of immune cells at the lesion site; however, the mechanism that promotes the birth of new neurons is still under debate. Neuronal regeneration is restricted after spinal cord injury, but can be stimulated by experimental intervention. Previously we demonstrated that treatment co-ultramicronized palmitoylethanolamide a...
متن کاملAssessment of corelation between spinal canal shape and spinal cord injury in thoracolumbar spine fractures
Traumatic spinal cord injury is one of the important causes of disability.in some of vertebral fractures,spinal canal is deformed and compromised.the relationship between the shape of the cervical canal and spinal cord hnjury has been proved but such a correlation for thoraculombar spine 50 patients with compromised canal(cases) and 50 oatients with intact canal were evaluated in the light of s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 102 4 شماره
صفحات -
تاریخ انتشار 2009